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149094
A Prediction Interval Approach to Defining Variables Sampling Plans for Finite
Lots Required to be of High Quality: Single Sampling for Gaussian Processes

by

"Kenneth W. Fertig and Nancy R. Mann

ABSTRACT

S C 'A prediction-interval approach and an assumption of a Gaussian manufacturing

%• S process are used to derive a variables sampling plan applicable to finite lots

QQ required to be of very high quality. Values tabulated for calculating accept-

ance regions are such that, with high probability, accepted lots will have zero

: defects. Further, tables are given for selecting sample size for a specified

combination of lot size and acceptable quality level. Comparisons show that,
for a fixed risk level, substantial savings in required sample size can be

{ effected over those specified by comparable hypergeometric sampling plans.

Lots ranging in size from 5 to 100 are considered.

Bounds for the probability of accepting a lot with a fixed number of defects

and coming from a prescribed manufacturing process are derived and prove to

be very tight. Not only are these bounds useful in defining the required

sample size in the sampling plan context, but the method of derivation has

application to other areas of sampling, e.g. from truncated or stratified

distributions.
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1. INTRODUCTION

In the following, consideration is given to sampling from finite lots for

which the underlying process distribution is Gaussian with unknown mean

and variance. It is assumed that accepted lots are required to be of

very high quality, that is, with high probability, accepted lots should

have zero defects. An item will be said to be defective if its measured

parameter, x, is less than some specified value L (greater than a specified

U).

Suppose one were to make no attempt to use the knowledge concerning the

distributional form of the process that generated the lot. Acceptance

or rejection of the lot would then be based solely on the attributes data,

i.e. whether or not the observed x's were less than L (or exceeded U). A

required sample size would probably be determined for a specified combina-

tion of lot size, rejectable quality level and acceptable quality level

by use of the hypergeometric distribution, perhaps from tables of Lieberman

"and Owen [8]. Use of binomial sampling plans which inherently make no

provision for the finite size of the lot, can lead to sample-size require-

ments that are unnecessarily large, perhaps even exceeding the lot size.

Here it is assumed that we record the variables data, the sample measure-

ments, x1, ... , xn, of the normal variate that determines whether or not

an item is defective. One would expect that the required sample size

associated with a specified combination of lot size and acceptable quality

level based on the additional information xl,..., xn snd an assumption

of normality for the process distribution would be less than required



solely on the basis of whether or not the x's are less thani 1. (greater

than U). What is desired, therefore, is a small-lot variables sampling

plan (one that makes use of sample measured values and the distributional

form of the process) that can be applied to lots required to be of very

high quality. In the following, only a lower specification limit L will

be discussed. The theory developed can be applied to upper specification

limits by appropriate changes in notation and sign.

The small-lot Gaussian sampling plans of Fertig and Mann [3], the theory

for which is described in [5], are based on a decision-theoretic approach

and an economic loss function. Use of the loss function requires that

rejected lots be screened and defective items be replaced by nondefectives.

Because of this requirement, these sampling plans cannot be applied, for

example, to situations of destructive testing. The sampling plans to be

described in the sequel, however, do not depend on the utilization of a

loss function and can be used even if the sampling situation involves

destructive testing. Moreover, these plans are based on what will generally

be considered a more classical approach involving none of the Bayesian

methods required in the decision theoretic approach, e.g. the use of

"optimal" priors on the process parameters to compute the posterior

expectation of the number of defects remaining in the lot after sampling.

The new sampling plans are "Double Zero" sampling plans in the sense

described by Ellis (2], that is, lots are required to have zero defects

with high probability and detection of a defect in a sample requires

rejection of the corresponding lot. Ellis [2] maintains that such plans,

which are used currently at Pratt and Whitney Aircraft, "are especially

effective in the metal working industry." The new plans differ from Ellis'
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in that these are based on actual variables data while his are not and

here there is no consideration given to Ellis' "gray areas" of marginal

quality.



2. BASIS OF THE SAMPLING PLANS

A sampling plan can be described in terms of its acceptance criteria and

the manner of specifying the sample size as a function of lot size and

given requirements on quality level. Here, the rpproach used in defining

the acceptance criteria is based on the theory of ciassical prediction

intervals. Thus, for a sample of size n from a lot of size N, the sample

variables data x1 , X are used to predict whether or not the N-n

unsampled items in the lot are all nondefective. The actual prediction

interval is computed on the basis of the sampling distribution of

R N-(X-Y N)/S (2.1)

where Y is the smallest observable value of the random variate X in
l,N-n

the unsampled portion of the lot and X and S are the random variates with

realizations x and s, respectively, calculated from x .... , xn. If we let

, be the 0O0yth percentile of Rn , then (X-0 S, +
y,n,N-n nN-n' y,n,N-n

is the 0O0y percent lower prediction interval for Y1,N-n"

Methodology for relatively easy and inexpensive computer calculation

of 
8
yn,N-n was developed by Fertig and Mann [6]. The procedure

depends on the numerical integration of a single integral (shown in

Section 5), in contrast to the earlier approach of ibahn [7) which

involved a multivariate t-distribution and numerical integration of a

double integral.

Care must be exercised in the interpretation of a prediction interval.

Specifically, in this case it means that if pairs of samples of sizes n

and N-n are created repeatedly by the manufacturing process, the 100 Y

percent random prediction interval (K-0 ,,n,NnS' + ) with K and S

-I-



computed from the first sample of size n of the pair, will contain YI,N-n'

the smallest observable variate in the corresponding second sample of the

"pair, 100y percent of the time. If the prediction interval contains the

smallest observation y then of course, it contains all the observa-1Y,N-n' core

tions in the second sample, the unsampled portion of the lot in the

present context.

2.1 Acceptance Criteria

For the sampling-plan tables presented in this paper, we have set

y = 0.90. The value of e for each n and N considered is given in
y,n,N-n

Table 1. The basis for choosing the sample size n will be discussed in

section 2.2. Once the sample x1 ,..., xn has been observed and x and s

computed, the following specific acceptance criteria for the lot can be

applied.

Accept the lot if

X. > L for i=l ... , n (2.2)

and

S> L. (2.3)

These criteria follow directly from the consideration that only those lots

that have no defective items in them are acceptable. The first condition

(2.2) specifies that there must be no defectives in tile sample and the

second condition specifies that the sample must predict with a high degree

of confidence (90 percent) that there are ito defectives in the remaining

portion of the lot.

2.2 Selection of Sample Size

In the classical operating-characteristics ,,. to indexing sampling

plans, t he acceptance criteria and sample size are chosen so that the producer's



TABLE 1. FINITE LOT VARIABLES SM~PLING PLAN ACCEPTANCE FACTORS,
bn, N-n, FOR y = 0.90 AND ACCEPTANCE QUALITY
~LEVEL PERCENTILES, AQLP, FOR 1 - =0.95

Lot SosoplIe 6 QLP Lot Sasple 9 551.1 Lot Soopl 90 AQLP
Site Size (0.00) (0.95) S-z Size (0.90) (0.9S -ie Site (0.0 (0.95)

5 7594 14.949 1s 2 1 .2 0 12.42'S 15. 35 3 30.123

3 3.066 S.460 3 S.491 j 9.59(, S 6.256 10.90
4 1.831 3.156 4 4.104 6.-3- 3 4.682 '.652

S 3.51l j .S34 5 4.03S 6.317

6 2 8.730 17.166 6 3.1-.1 I 4.84-I 6 3.675 5.573

3 3.615 6.382 7 2.935 4.31'4 7 3.438 S.087

4 2.484 4.183 8 2.74S 4.014 0 3.26? 4.737

5 1.6802."27 9 2.580 32)9 3.134 4.468

IS 3.422 3.432 10 3.02S 4.250

2 9.619 1IS90OS I 2'.2S2 3.IS5 11 2.931 4.066

3 .09 58I 2 2.80? 3.905
4 .095 7.1058 16 13.592 26.676 113 2.,2,5 3..61

3 .7 .8 5.594 Q.768
3621 4 .0 .1 14 .66 3.627

8 2 19.14S 3 0.323 S 3.590 5.644 15 2.625 3.51.'
4.,*16 -'S80 6 3.246 4.949 167 .5 3.255

5115 .223 - .00 4.49 I? 2.29 3.

5 -6.' 4.110 8 2.826 4.12
6 l.105 29 9 2 .b(9 3.04 5 2 16.019 31.427

16 21.S2s 3.;4 3 6.504 11.331

9 I.I31 2.392 .364 4.866 -.945

3 10565 S1.51 005-13.4 4.196 6.562

3 35 999 P 1.93 2 16 6 3.8.5 5.94

4 .36 556 3 56S 99' - i.59;8 5.295
6 239 3413 4.940

S '.6S 5.43 3201 4.669

".0- I.'3 t 3006 4,273

10s66 8 I' ) 3009 4.119
9- q.64 940 t 3.91 s 2.2 3984

5 S 58,3 10 .611: 92.8 ,.863
5 2 1 4.11 It 49 91 3. 52 E

.606 1'11 496 3 '99

'0 I 16 .'62 3.649
-9 1Ab. I 14.- 9 i' F 0 3.65)

491 3.456

6 l ql '1 4: 11 51. '31 3 .,160

1A .6 6 55 3 I0 30 : .1.60
I;( '." 1 5. 1 s .183

".10 .~ 93426%

893 .8 Wj 91. So .690

III~~~. .1 .14 '' l'iIS. " 5.098

91 1. 46 S '' 10').55 4.

04.606

t.I %I o o'9 I. 1 129 4..2,

lI (164 3.1 6
'0 16

1.00 1,1 01s 191 0 .
1915 4 1. "' t 95 %.592

I Ii o15. 94

6 5401 I I: I) )

'11 92 1.59

19 1t. ~ s'

1 .46 o"



TABLE 1. (Concuded)

Lot Saopl1e e AQLP Lot SamplIe 8 (AQL Lot -Sample 9 AQLP

Site 0. e (0.90) (0.95) Size S i e (0.90 (0.95) Si eý S-t (0.90)1 .0-9S)

40 2 17.0191 .13.386 so 2 1l.-57 34.830 60 3 0 2.909 3581
3 6.876 11.971 3 -. S 12.44 31 2.889 S.4

4 5.139 8.382 4 S. 340 S.O132 2.869 A.i

S .43 6.922 5 4.606 10I4 '13 2.849 3.7

6 4045 6.116 6 4.204 6. 48 34 2.828 ..442
96 .09,394- 1 35 2.808 * .408

8 620 5.228 0 3.-6" 3..ý.6 -78-7 ,

9 34- 4.950 9 3.63,21 .43 2 .766 3.340

10 .1.38' 4.731 10 3.526 4.23s 2.-44 3.0

11 .3.'96' I.SS1 11 31.440 39 .T2

12 323 4.401 12 3.368 4.590 40 2.6998 .2

13 .3.160 4 . 2. " 131 3.306 4.41 31 -'.6'6 3.0

14 3 .10 4.5
10 3.004 4.006 10 3.S 04 348'4 ' 2 18.814 36.901

16 3.008 3.965 16 -,1' 1 .16 31 .544 13.1-0

17 2.964 3.9 80 1' 3.1" 4.080 4 5.62 9.161

18 .9 24 .8, 3.002 4.00-09 5 4.052 SS58

19 780 3.-29 59 ;.S 30 9 40 6 4.429 &.6-8

28 .04 .660 '0 310'0 4.160 614

21 211 3.94 S 89 -,O 5.58
2- I.S 3..5t0 8'01 .32 s.421
23 27. 39 A.56 59 f,7 23.3589
"1. 27 3 3.40' 4 906 0 ;.6,S 5.002

23 2,66' 3.'34b S 6.-, 3(l115 3.S6.' ..846

26 2.629 .. 286 2b 5 ; 3s . SO 00 3.501
.590 3 ''2 4 2" 05 14 9 449 4.bOl

45r 41 14.1565 9 2' 4 3.42 36 3 60ý 4 414

:0 -.,23 30 ,R 39'38S 4.3

50 3- ' '0
6 ' .69 3.269 3. '60 4 200

456 .06 313 .665 34 5 1. l1 31 .,40
6 5190 I 6.40 4,995

5 8 3 .9 5 6 S .9 59 0
,9s 6 1!.064

.1~~ 3.15 ;.4.

1 5 1 9,11 0. 90 t. 1 9 .00 0

10S; 059 1 55' 8'9
566 144 9"0 905b 3.

.9 845 .' 84 M9 's9
OR9 I ,19iot'91,I

1"S ; ,599 1:. 5,1 1 4'S.0, .b

.9 300 .9 bS3

!qb Wt.'5.'5 ' *

9 9 It.5' 0

-1. to

is5 '5,.5 5 I"S's ()I. -I S

I -V'9 1 W'5055
__________~~1 _______ I____ m_____



and consumer's risks satisfy certain constraints. Specifically, the

producer's risk, the probability of rejecting lots at the acceptable

quality level (AQL) must be less than or equal to a and the consumer's

risk, the probability of accepting lots at the rejectable quality level

(RQL) must be less than or equal to l-y . For each sample size, the

acceptance region given in (2.1) is designed to give the consumer lots of

high quality. It is granted that (2.2) and (2.3) do not lead to the

classical protection criteria at the RQL mentioned above, but they do lend

themselves to a consumer's-risk interpretation. Specifically, only those

lots that the user predicts not to be of rojectable quality (one or more

defects) are accepted. Here, the consumer is "risking" a faulty prediction

at the 100y th confidence level.

Taking this as a proper consumer's risk control, we are free to choose the

sample size to control tile producer's risk. Here we call closely follow the

classical interpi -tation, in that we require that lots with zero defects

will be accepted at least 1011 (1-OL) percent of tile time. Ill order to compute

this prohability, however, we usost specify the quality of the process tile

lot comeis from as Iloasuroed bh p , the kverage frection defective. Letting

h. ') be the cummulative standard normal distribution, 11 and a tile stean1 arid

standard deviation of the manufacturing process, we have th;Lt p1 ((1.-i 1/o).

If we let k be the number of defects in the lot, we have that tile sampl,

size, n, must be such that:

V [acceptimng lot I k-0, p > I- (2.,I)

If tile number of defects in tile lot were not specified ;as a condition in

(2.4) amnd only (2.3) were used as all acceptance criterion, then the

-8-



probability of accepting the lot could be computed directly as a function

of p using the non central t-distribltion. However, this is not the case.

Furthermore, an exact expression for the left hand side of (2.4) is not

available in general. Fortunately, upper and lower bounds for the left

hand side of(2.4) are derivable. These bounds prove to be quite tight for

all values of n and N of practical importance in the sampling-plan applica-

tion. A theorem giving expressions for the bounds is proved in Section 4

for general k. If we let P be the lower bound and require that n be such

that

P > 1-a , (2.5)

then (2.4) is satisfied. This is exactly what has been done to generate

the values in Table 1. Specifically, Table 1 gives to each N and n tabula-

ted, the acceptance parameter 0ynN-n for y=0.90 and the acceptable quality

level percentile (AQLP) defined as

zl) = (L-ji)/a (2.6)

with p = (Zp) for I-n = 0.95.

It is interesting to note that the upper bound P for the probability of

acceptance is, for many combinations of N and n shown in Table 1, equal to

P. It is for these combinations of values of n and 1 that (2.4) is an exact

equality. This occurs for all n less than N12 uip to N-2S, for all n less

than N/3 up to N-50, for all n less tl-an N/4 up to N,80 and for all n t 22

for N-90 and 100. In all cases the difference is less than 1% between 7'

and 1) fur in S N/2, and less than 0.08% for n .< N/3. Values for l-a-0,90

as w'll as all values of T are given in Fertig and Mann [5].

Before we proceed with a proof of the theorem referred to abo'e, we give

an example of use of the tables.

-9-



3. EXANPLE OF USE OF THE TABLES

Consider a lot of size SO. Suppose one wishes to reject the lot even if

it has only one defect. The binomial plan, which ignores the finitf- size of

the lot, would require a sample of size 114 in order to reject a lot ninety

percent of the time that is 2%=100 (1/50) % defective. The hypergeometric

plan uould require a sample of size 45 to insure a 90% rejection rate.

Since it is required to have such high quality in the accepted lot, one

might wish to use a plan based on the assumption that the manufacturing

process producing the lot is very good. If variables data are being

recorded, and it can be assumed that these data are normally distributed,

then the procedure presented herein will apply. Specifically, referring

to Table 1, we find that a sample size of 9, for example, will guarantee a

95% acceptance rate if the manufacturing process mean is at least 5.147 0

above the lower specification limit. We vould accept the lot if the corres-

ponding sample, xl,..., xg, had no defects and, from Table 1, its mean was

at least 3.632 sample standard deviations above L. From this latter criterion

we see why the process mean must be better than So above L in order to

guarantee a 95% acceptance rate.

At this point, it might bý appropriate to discuss a criticism of the above

procedure, namely expecting the normality assumption to hold at the extreme

tails of the process distribution (5 0 from the mean), In fact, however,

normality in the tails is not as necessary as one might first think to

maintain accuracy in the calculation of the probability of acceptance. The

normality assumption in the tails is used only in converting from the AQLP,

)/.•, to the process fraction defective, p. In fact, since p will tend

to oe very small, it can be off by many oroers of magnitude because of a

-10-



lack of normality in the tails and still the probability of acceptance will

remain relatively unaffected. This can be seen by inspecting the binomial

probabilities in (4.4) and (4.5). The important parameter in the calculation

of the probability of acceptance is not thf fraction defective per se, but

rather the acceptable quality level percentile (L-li)/O which is directly

proportional to the noncentrality parameter in (4.4). It is this parameter

which must be controlled by the manufacturer as well as the process average

defective in order to guarantee a high probability of acceptance. It is

for this reason that the tables are given in terms of AQLP rather than the

AQL. Even if the quality is not as good as the AQLP, all that occurs is a

higher rejection rate, essentially what is occurring with the hypergeometric

plan wherein practically the entire lot is being screened. On the other

hand, if the process quality is as good as the AQLP, a substantial savings

in sample size has been effected.

Finally, we should remark that requiring very high manufacturing quality

levels is not unreasonable in most cases in which lots would be unacceptable

if they contained even a single defect.

-11-



4. TIlE BOUNDS ON THE PROBABILITY OF ACCEPTANCE OF A LOT

In this section we prove the following theorem which gives expressions for

bounds on the probability of acceptance of a lot of size N on the basis of

(2.2) and (2.3) when we specify fraction defective p in the process, number

of defectives k in the lot and confidence level y that an accepted lot has

zero defectives. We note that this theorem may well be of interest outside

the sampling-plan context. It applies generally to truncated-sampling

applications and stratified-sampling problems.

Theorem

Let T (tlv,6) be the cumulative non-central t-distribution with v degrees

of freedom and noncentrality parameter S. Let Zp be the loop th percentile

of the standard normal distribution. Let 0 be the variables acceptance

factor defined by (2.3) for a lot of size N and sample of size n. Consider

lots thst have k defects and come from a process which produces fraction p

defective. The probability of accepting such lots satisfies:

w <P (accepting lot Ik,p) !p (4.1)

where

S= min (l,P*) (4,2)

P = P*-n, (4.3)

with

P. [i ~-I' [(knN -T(Vn ln-l,-V-nzJJ (4.4)B (O;p1,n)

and

anm OknN 1[l-T('n-t 0GZn-Z-I,-VnTi Z ) B(.;p~n),(4.5)

B(O;p,n) Z=1 B(O; p,n-Z)

and

11(Z;knN) ) -1 (4.6)

n(N)
-12-



B(9.;p,n) = (n) p£ )n (4.7)

* (n-Zi(-i)_! o
o0 (n-i-)(-) 1/2

m = max all intergers < (4.9)
n-l+no'

The values of 0 in (4.4) and of 0* in (4.5), as can be seen from (4.1),

depend upon the specified value of the confidence level Y as well as n and N-n.

Also, as will be seen subsequently, summation on 9. in (4.5) should be taken

as zero if m=O. For this case P=T and, therefore, the probability of accepting

the lot can be computed exactly.

To prove (4.1), we first note that since the events i=0 and kJO are disjoint

all-inclusive events, then

P (accepting lot Ik,pl (4.10)

P (accepting lot I9=O,k,pl P {(Z=Ok,p)

+ P (accepting lot I£!O,k,p} P {i#Olk,p)

Since we reject the lot if 9, > 1, the second term on the right in (4.10) is

zero. When k is given, the probability distribution of Z is hypergeometric.

Therefore,

(k} N-n/

P {L=0 Ik,p} k ) k-(

F H(O; k,n,N)

When W.0, the decision whether or not to accept the lot rests on the value of

the random variable L* = X-OS. Thus, we see that

S..13-



P {accepting lot Ik,p} (4.l1)

= P (L*>LIt=O,k,p} H1(O;k,n,N)

Finding the bounds in (4.1) now reduces to finding bounds for the probability

that L* is greater than L, given that it is based on a sample with no defects

coming from a lot with k defects produced by a process with p fraction

defective. Since we assume the items in the lot are stochastically inde-

pendent observations from the process and since we are considering a series

of lots all from the same process, sampling from the lot and requiring the

sample to have zero defects is the same as sampling from the process and

still requiring the sample to have zero defects. That is

P {L*>LIZ=O, k, p) = P {L*>LII=O, p1

where the expression on the right can be computed assuming a sample of size

n is taken from a process of quality P with the restriction that no defects

are in the sample. But since the events ý=t for Z=O,.., n are disjoint

all-inclusive event for this procedure, we see that

P {L*>LIftO'P} P >LipL (4.12)

n P{L*>LI&=Z,p) P(gP=IP}

t=l p (g=0Ip}

In order to proceed, we need the following three lemmas.

Lemma 1 Consider a sample of size n1 from a process of quality p. Let

LI = X1-OSI where X and SI are the observable sample mean and

standard deviation (•1= : Xi/n 1 , S1 2 (Xi 1)/(n -u))

Then

P (L*>LIpl = I-T ( I-n 1n-.. ,r T )
1 1 P

-14-



Lemma 2 P {L >Llp} < P {L*>LI£1 =O, P)

where Z is the number of defects in the sample of size n1

1Lemma 3 P tL:>LltlI=?tl,pl < P (L:" >L:•x .... 5g=L, t =o,p}

where L1 is formed by replacing all obse7-vations in the sample

that are less than L with the value L itself. (Thus, Z; , the

number of defects remaining, is zero.)

The latter two leýzmas follow easily if one notes that L1 is an increasing

function of each of the sample observations. Thus restricting these obser-

vations to be above certain limits increases the probability of observing an

L1 greater than L.

The first lemma follows from the definition of a non-central t-variate.

Specifically,

F {L*ŽLIp) P {Xl -Os 1 >Lhp)

1//

Since L-'- ,f (•-Il/a is N(0,1), anti /l/7 is the square root of an

independenc chi square variate divided by its degrees of freedom (n-l1), the

lemma follows directly by recalling that t = (z+6)/xJ/V is a non-central t

variate if z is standard normal and X- is an indepondent chi square with

degrees of freedom V.

Since the distribution of ,' given the sample comes from a process of quality

p, is binomial with parameters p and n, we se" from Leimma 1 that (4.12)

imp I ies
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P (L*>LI£.0,p} < (l-T(-n0[n-l,-Anz p))/B(0;n,p) (4.13)

From (4.11) and (4.13) we see we can bound the probability of accepting the

lot from above by the expression for P given in (4.4). This establishes

(4.2).

In order to establish a lower bound or the probability of accepting the lot,

one could use Lemma 2 directly in (4.11). A sharper bound, however, will in

general be given by considering the summation in (4.12). Let L* be based on

an observable sample with k defectives, Xl,..X* <L and n-Z nondefectives

X£+l,*~ Xn-L. Let T2= Xi/(n- ) S2  1 • --.
i•t+i - ' 2 - (n-k-i) i>+x+l

We now seek to compute P{L*>LIX, ... ,XZ=L,Z'=0,p) defined in Lemma 3. After

some algebra, we find that using Lemma 3 gives

P {X--0S>LjZ=k,p)

< p \n- - "n-1 -0 2 n 2-- $2 2 =0P

929
This probability can be non-zere only if - L>0 Thus, Z. must be

n1 n-i

strictly less than n(n-1)/(n-l+r,02 ). This is the value given for m in (4.9).

Since the number of defects, X_, in the portion of the sample to be used to

compute X, is zero, we have Y, ? L. Therefore, we see that for Z<m,

I' (f-0s>!.If=p}

S P)(,-L)/S, > nO 
12)

" " {n-
9 .

) (11-1 )-n9.9'

0,pI

Since XT and S2 are based on an observable sample of size n, = n-t that

has zero defects, we can apply Lemma 2 and a relation similar to the first

half of this proof (in which the expression for P* is derived) to find that
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P{x 2-s2 >L~p}
P Y -OS>Ljý=1§,p} < 2

P{i2 Ojp)

Here, the probability in the numerator on the right is now computed with no

restriction on the number of defects in the sample of size n2 =n-k. Therefore,

we can apply Lemma 1 to get for each m=l. a

(1-T(VnA"Ogjn-k-l,- 4W-Zt)) (4.14)
P {X-GS>LL9=kp} < Z__

B(O;p,n-Z)
and

P {X-OS>Ljt t,p} = 0 (4.1S)

for Z= m+l, .. , n.

From (4.15) and the definition of m, we see that the sum in (4.14) should be

taken as zero if m=O. For m?1, we see from (4.11), (4.12) (4.14), and (4.15).

that D is as given in (4.5). This completes the proof of the theorem.
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S. CALCULATION OF TABLE ENTRIES

The distribution of the random variate Rn,N-n= (X-Y1 ,N-n)/ S, given by

(2.1),which providesone of the criteria for acceptance or rejection of a

lot of size N on the basis of a sample of size n, is considered by Fertig

and Mann [6]. They show that

P (R n,N-n<ýO)=

N-n f [14(z)]N-n-1 exp(-z 2
/2)T (XI Oln-l,- Fn z)dz, (4.1)

where T(.Iv,6) indicates the cumulative noncentral t-distribution function

with degrees of freedom and noncentrality parameter 6 and D(') indicates

the cumulative standard normal distribution function with mean zero and

variance one.

For each combination of N and n given in Table 1 P (R <O) = .90 was solved
n,N-n

iteratively for 0 by use of Muller's fI0] method, a multipoint iteration

scheme which determines a next guess by using inverse parabolic interpola-

tion based on the previous two iterates and their midpoint. A first guess

for the value of 0, was provided by the approximation suggested in Mann,

Schafer and SingpurwalIa [91 and investigated by Fertig and Mann [61. Sixty-

four point Ilermite Gauss quadrature was used to evaluatte the integral given

by equation (4.1), the function ýD(.) having been determinod from

err (x) = 2I (x/r2)-I, x>1, with the error function err (-) computed using

a double precision 111M subroutine an6 tihe noncentral t-distribution function

computed using an algorithmu of Bll. . Cooper ([1. Ichere the combination of

values of n and N-n agree with those of Hahn 171. computed using the Mnulti-

variate t-distribution, our computed values agree with his to the nuither of

significant figures given.
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The acceptable quality level percentile AQLP defined as z = -(p-L)/o

with p equal to AQL, the acceptable quality level, and related to z throughP

p = ((Zp), was determined iteratively by requiring equality in (2.5) with P

given by (4.3). Muller's [10] method, discussed above, was used in this

iterative determination.
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